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Certain congenital disorders that are rare in the general population are quite common in individuals with trisomic
conditions. For example, complete atrioventricular septal defect occurs in about 20% of individuals with Down syndrome,
an approximately 500-fold increase in risk as compared to individuals without Down syndrome. Genetic variation on the
chromosome involved in the trisomy may affect susceptibility to these trisomy-specific disorders. That is, increased dosage
of a variant may be directly involved in increasing the risk of a disorder, or it may be indirectly involved by causing up- or
downregulation of other genes. As in standard disomic gene-mapping, one can search for genes using linkage or association
methods. Within association methods, one can consider case-control methods or family-based control methods such as the
transmission disequilibrium test (TDT). Most gene-mapping methods need to be substantially redesigned for use with
trisomic data. In this paper, we present a ‘‘trisomic TDT’’, a statistical method of testing for nonrandom transmission of
alleles from parents to trisomic children. We demonstrate the method on a dataset of parent-child trios in which the child
has Down syndrome. Genet Epidemiol 26:125–131, 2004. & 2004 Wiley-Liss, Inc.
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INTRODUCTION

Although mental retardation is a consistent
hallmark of all trisomic conditions, there are other
disorders that are highly associated with specific
trisomies. Examples include heart defects, leuke-
mia, and duodenal atresia in trisomy 21 [Epstein,
2001]. Even among individuals with a specific
trisomy, however, these disorders are not uni-
versal. Three factors have been proposed to
explain the variability among individuals with a
specific trisomy: 1) stochastic factors, 2) extrinsic
factors, and 3) genetic differences [Epstein,
1993]. Stochastic factors refer to the inherent
variability normally present in any developmental
process so that, with all else being equal,
more than one outcome is possible. Extrinsic
factors include variation in maternal and
environmental exposures. Lastly, genetic varia-
tion either on the chromosome involved in the
trisomy or on another chromosome may affect
susceptibility.

We previously proposed a linkage method to
identify genes on the trisomic chromosome that
increase susceptibility to specific disorders. An
unusual feature of trisomic linkage testing is that
studies are possible with only a single trisomic
child, since the two chromosomes with the same
parental origin provide linkage map information.
Our approach was based on a hypothesis similar
to that described by Engel [1980]. Specifically, we
proposed that ‘‘hyperdosage’’ resulting from
normal allelic differences explains some of the
phenotypic variation in a trisomic condition
[Feingold et al., 1995; Lamb et al., 1996]. Thus, a
proportion of trisomic genotypes (and possibly
rare disomic genotypes) cause a threshold to be
exceeded, resulting in a particular phenotype. In
the affected individual, the defect is due to the
presence of two identical copies of a susceptibility
allele, inherited from a heterozygous parent. This
‘‘reduction to homozygosity’’ or ‘‘disomic homo-
zygosity" for a susceptibility allele can arise
in many ways: 1) from mitotic nondisjuntion,
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resulting in disomic homozygosity for the entire
chromosome; 2) from an error in meiosis II,
resulting in disomic homozygosity from the
centromere to the most proximal recombination
event; or 3) from meiosis I nondisjunction,
resulting in disomic homozygosity distal to a
recombination event. Regardless of the exact
mechanism, individuals with trisomy and a
particular phenotypic defect are predicted to show
greater-than-expected levels of disomic homozyg-
osity in the chromosome region containing a
susceptibility gene. We proposed a simple strat-
egy, similar to that used in linkage studies using
affected relative pairs, to identify the region of
maximal disomic homozygosity [Feingold et al.,
1995].
With the current availabilty of the human

genome sequence, as well as substantial (and
ever-improving) information about genes and
polymorphisms, it is now timely to consider
association methods for detecting susceptibility
genes for disorders related to trisomic conditions.
Whole-chromosome scans of the trisomic chromo-
some are within the realm of feasibility. As in
standard disomic gene-mapping, association stu-
dies can be divided into population-based case-
control studies and family-based control studies.
By a "family-based control" method, we mean any
test that conditions on parental (or other family)
genotypes and tests for segregation distortion in
the alleles that are passed to the children. For
simplicity, we refer to such tests for the remainder
of this paper as transmission disequilibrium tests
(TDTs). The advantage of TDTs is that they are
robust to population stratification, assortative
mating, and other factors that can distort the
parental distribution. The downside of TDTs is
that they are not able to draw any power from the
distribution of the parental genotypes. To take an
extreme example, imagine a simple genetic dis-
order caused by a rare dominant allele B. If we
collect case-parent trios, almost all parental pairs
will include exactly one B allele. A TDTconditions
on the parental genotypes and thus eliminates this
important information, whereas a w2 test for a
case-control comparison of the offspring will
implicitly draw power from the distorted parental
distribution.
In general, disomic gene-mapping methods are

not directly applicable to trisomic individuals, but
trisomic methods can be derived using similar
principles. As discussed above, linkage methods
for trisomy were developed by Feingold et al.
[1995] and Lamb et al. [1996]. Case-control

comparisons of trisomic individuals do not re-
quire special methods, except that they must be
done by genotype rather than by allele, since the
alleles are not independent. (Testing by genotype
is probably preferable in disomic data as well; see
Sasieni [1997]). In this paper, we fill out the
complement of trisomic mapping methods by
developing a trisomic TDT. We concentrate on
methods for binary traits, but methods for
quantitative traits are also possible.
The standard disomic TDT, in its simplest

formulation [e.g., Spielman et al., 1993; Schaid
and Sommer, 1994], can be thought of as follows.
The unit of study is an individual who is affected
with the trait of interest, along with both parents.
The case and parents are genotyped at a diallelic
marker. Each heterozygous parent provides an
independent piece of data. We tally the alleles
passed from the heterozygous parents to the
affected offspring, and test whether the segrega-
tion ratio of the two alleles is 50/50. If the
segregation is nonrandom, we conclude that an
allele at or near the marker is probably affecting
risk for the trait we selected on. Under standard
simple assumptions, the TDT test statistic is
proportional to (1�2y)d, where y is the recombina-
tion fraction and d is the association measure
[Ewens and Spielman, 1995]. However, we must
always be aware that simple models might not be
correct; we could be picking up segregation
distortion that has nothing to do with the trait.
Apparent segregation distortion can even be
caused by genotyping errors [Gordon et al., 2001;
Mitchell et al., 2003]. A careful application of the
TDT includes a ‘‘control’’ sample of unaffected
children and parents, in order to make sure that
any observed segregation distortion is seen only in
the affected group.
In the trisomic case, it is even less appropriate

to blithely assume that any segregation distortion
we observe is due to the trait, because we must
consider the issue of survival to term. For
example, since live-born babies with Down
syndrome account for only about 20% of clinically
recognized trisomy 21 conceptuses [Hassold and
Jacobs, 1984], we have to take seriously the
possibility that there could be gene-specific selec-
tion effects. If survival of the fetus is affected by
specific genes on chromosome 21, then we will
observe segregation distortion at those loci in a
sample of live-born individuals with, say, a
congenital heart defect, even if those genes have
nothing to do with the heart defect. That is, the
selection and disease-association parameters are
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confounded. The trisomic TDT that we propose
here can be applied to either a control sample
(trios in which the child is trisomic but has no
other specific phenotype), or a case sample (trios
in which the child is trisomic and additionally has
some particular phenotype). If the test is applied
to a control sample, any segregation distortion
that is detected can be interpreted as a selection
effect, i.e., as evidence that variation at or near this
locus is associated with survival of the trisomic
embryo. If the test is applied to a case sample, we
must interpret segregation distortion as an un-
known combination of selection effect and effect
on the trait we are studying. There can also be
selection effects due to the trait, e.g., if some
defects are severe enough to cause the fetus to
spontaneously abort. If we apply the test to both
case and control samples, we can avoid the
confounding, and differentiate selection and trait
effects.
In developing a trisomic TDT, two issues arise

that are specific to trisomy and that change the
form of the test substantially. The first is that one
parent is contributing two alleles, and the other
parent is contributing only one. Thus contribu-
tions of the two parents cannot be considered
symmetrically as they are in the standard TDT. We
deal with this issue by developing a test that is
based on the genotypes of the offspring rather
than on the separate allelic contributions of the
two parents. The second issue is that the two
alleles contributed by the nondisjoining parent are
not independent. That is, depending on the type
of nondisjunction event (meiosis I or meiosis II
error) and the location of the marker relative to the
centromere, the two alleles, contributed by the
nondisjoining parent may be duplicates of one
parental allele, or they may be two separate
parental alleles. This creates a dependence be-
tween the offspring alleles that is a function of the
genetic map. In disomic data, alleleic association
parameters and genetic map/linkage parameters
are generally orthogonal, and can be estimated
and tested completely separately. In trisomic data,
they are dependent, and this dependence must be
incorporated into the TDT. In our TDT, we
estimate the map parameters along with the
association parameters, but the test could be
adapted to use map parameters that are known
from other sources (see Discussion).
Taking all of these complications into considera-

tion, the final form of our test is a likelihood ratio
test comparing the likelihood of the data under
a random segregation model to the likelihood of

the data under a model that allows for selection
and/or effects on the trait. Below, we outline the
model. We then describe the test, and finally
demonstrate it on an example ‘‘control’’ dataset of
trios in which the offspring has Down syndrome
but no other specific variable phenotype.

THE MODEL

Assume a biallelic marker locus with alleles
labelled ‘‘1’’ and ‘‘2.’’ The association parameters
in our model are

w0¼probability of survival and affectedness of

a conceptuswith genotype 111;

w1¼probability of survival and affectedness of

a conceptuswith genotype 112;

w2¼probability of survival and affectedness of

a conceptuswith genotype 122; and

w3¼probability of survival and affectedness of

a conceptuswith genotype 222:

We assume that w0¼1, and that the other ws are
relative parameters, because we can never esti-
mate all four of them with data only from live-
born individuals. This means that w1, w2, and w3

can take any value greater than zero. The w
parameters do not depend on the parent of origin
or stage of origin of the trisomy.
As previously discussed, the alleles transmitted

to the trisomic offspring are dependent on the
genetic map. Let ‘‘NDJP’’ indicate the nondisjoin-
ing parent and ‘‘CDJP’’ indicate the correctly
disjoining parent. The map parameter we use is
h, the probability that the two chromosomes
contributed by the NDJP are reduced to homo-
zygosity (derived from the same parental chromo-
some) at this marker in a conceptus. Our parameter
h has a straightforward relationship to the usual
trisomic genetic map parameter, y. In a meiosis I
nondisjunction case, h¼y/2, where y is the map
parameter between the centromere and the mar-
ker being tested. In a meiosis II nondisjunction
case, h¼1�y. For more discussion of genetic maps
in trisomy see, for example, Chakravarti and
Slaugenhaupt [1987] or Feingold et al. [2000].
There is strong evidence for most trisomies that
the genetic map depends on the parent of origin
and the stage of origin of the trisomy [Hassold
and Hunt, 2001]. We indicate this by using hmI for
a maternal meiosis I error, hmII for a maternal
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meiosis II error, hpI for a paternal meiosis I error,
and hpII for a paternal meiosis II error.
Given parental genotypes, the probability of a

conceptus of each genotype depends only on h.
For example, suppose the mating type is 11�12,
where the 12 parent is the NDJP. Then the CDJP
must contribute a 1 allele. The NDJP contributes
12 if the two chromosomes are not reduced to
homozygosity, and 11 or 22 if the two chromo-
somes are reduced to homozygosity. Thus the
possible conceptus genotypes and probabilities
are

Pðchild is 111Þ ¼PðNDJP contributes 11Þ ¼ h=2;

Pðchild is 112Þ ¼PðNDJP contributes 12Þ ¼ 1� h;

and

Pðchild is 122Þ ¼PðNDJP contributes 22Þ ¼ h=2:

To account for survival and to extrapolate from
conceptuses to live-born individuals, we multiply
these probabilities by the w parameters (assuming
that w0¼1), which yields the unnormalized prob-
abilities

Pðchild is 111Þ ¼ h=2;

Pðchild is 112Þ ¼w1ð1� hÞ; and
Pðchild is 122Þ ¼w2ðh=2Þ:

Normalizing so that the sum of the probabilities is
one yields the expressions shown in Table I. The
example above is the second mating type shown
in Table I.

THE TEST

We use a likelihood ratio test with the model
described above to test the null hypothesis that
w1¼w2¼w3¼1, i.e., that there is no selection/trait
effect. We use a completely unconstrained alter-
native hypothesis. For a control sample, one could
potentially get more power by constraining the w
parameters to be ordered, but this is probably not
appropriate for a case sample, because there might
be combinations of selection and trait effects. For
example, suppose 99% of 111s die and the
remainder are affected, 50% of 112s die and the
remainder are affected, 30% of 122s die and
40% of those who live are affected, and no 222s
die but 60% are affected. Then we have w1¼0.5/
0.01¼50, w2¼(0.7)(0.4)/0.01¼28, and w3¼(1.0)(0.6)/
0.01¼60.
The likelihood is constructed as follows. Each

mating type shown in Table I gives us a multi-
nomial likelihood. These multinomial likelihoods
are multiplied together to form the overall like-
lihood. Each type of nondisjunction error (mI, mII,
pI, pII) is tallied separately because the h
parameters are different (if enough markers are
typed, one generally knows which subgroup each
case belongs to). So there is a total of 5 mating
types� 4 error types¼20 multinomial likelihoods
that are multiplied together to get the final
likelihood. The total number of independent data
points in the 20 multinomials is 9 data points� 4
error types¼36. The total number of parameters

TABLE I. Probabilities of offspring genotypes, given parental genotypes

NDJPa CDJPb Child Probability of child genotype, given parental genotypes

11 12 111 (1/2)/[1/2þw1/2]
112 (w1/2)/[1/2þw1/2]

12 11 111 (h/2)/[(h/2)þw1(1�h)þw2(h/2)]
112 w1(1�h)/[(h/2)þw1(1�h)þw2(h/2)]
122 w2(h/2)/[(h/2)þw1(1�h)þw2(h/2)]

12 12 111 (h/4)/[h/4þw1(1/2�h/4)þw2(1/2�h/4)þw3(h/4)]
112 w1(1/2�h/4)/[h/4þw1(1/2�h/4) þw2(1/2�h/4)þw3(h/4)]
122 w2(1/2�h/4)/[h/4þw1(1/2�h/4)þw2(1/2�h/4)þw3(h/4)]
222 w3(h/4)/[h/4þw1(1/2�h/4)þw2(1/2�h/4)þw3(h/4)]

12 22 112 w1(h/2)/[w1(h/2)þw2(1�h)þw3(h/2)]
122 w2(1�h)/[w1(h/2)þw2(1�h)þw3(h/2)]
222 w3(h/2)/[w1(h/2)þw2(1�h)þw3(h/2)]

22 12 122 (w2/2)/[w2/2þw3/2]
222 (w3/2)/[w2/2þw3/2]

aNDJP is nondisjoining parent.
bCDJP is correctly disjoining parent.
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being estimated under the alternative hypothesis
is 3 w parametersþ4 h parameters¼7. In actual
use, not all mating types and/or error types will
necessarily be included in a given dataset. For
example, if one allele is relatively rare, one is
unlikely to observe intercross matings.
Under the null hypothesis, the w parameters

disappear from the likelihood, and we can easily
specify the maximum likelihood estimates of the h
parameters. These are equivalent to the standard
two-point centromeric mapping estimates as
described, for example, by Feingold et al. [2000].
Under the alternative hypothesis, the likelihood
must be maximized numerically. Because
of the constraints on the parameters 0 � h � 1;ð
w1 � 0; w2 � 0; w3 � 0Þ; we used the L-BFGS-B
algorithm [Byrd et al., 1995; Zhu et al., 1997].
We wrote a FORTRAN program (available on
request) to maximize the likelihoods and perform
the likelihood ratio test. The w2 test of the
likelihood ratio has three degrees of freedom.
We tested our software extensively on simulated
and real data. The maximization appears to be
extremely robust, and the starting values do not
appear to matter. The one complication that arose
in real datasets is that when the sample size is
very small and/or one allele is rare, some mating
types will not be represented, and it may not be
possible to estimate all parameters.

DATA EXAMPLE

We applied our TDT to data from a single
single-nucleotide polymorphism (SNP) genotyped
in 43 control trios in which the offspring is
affected with Down syndrome but does not have
any additional specific disorder. The sample set
for this study was drawn from the larger study of
live births with free trisomy born and ascertained
in the five-county metropolitan area of Atlanta,
Georgia [Freeman et al., 1998]. Blood was obtained
on mother, father, and proband for DNA extrac-
tion. Genotypes used for this sample set were
obtained from a single SNP, rs874221 (http://
www.ncbi.nlm.nih.gov/SNP/index.html), geno-
typed within SH3BGR. SH3BGR is found ex-
pressed in fetal heart tissue [Egeo et al., 2000]
and lies within the proposed critical region for DS-
associated congenital heart defects [Korenberg et
al., 1994]. The SNP was genotyped by Pyrose-
quencingTM, which adequately genotypes trisomic
alleles.

The dataset is shown in Table II. Only non-
disjunctions of maternal origin are included,
because there are very few paternal cases in the
sample. When we apply our software to this
dataset, we get the parameter estimates shown in
Table III. The null hypothesis for this analysis is
that there is no viability selection due to genes at
or near this locus. If the null hypothesis were true,
we would expect to see values of the w parameters
near 1.0 in the alternative hypothesis column. That
is, the best-fitting model would be equivalent to
the null hypothesis. We would also expect to see
similar values of the h parameters in the two
columns. If the alternative hypothesis were true,
we would expect to see values of the w parameters
different from 1.0, and values of the h parameters
that differed between the two columns. The
reason the h parameters would differ between

TABLE II. Example dataset

NDJPa CDJPb Child mIc mIId

11 12 111 4 1
112 5 1

12 11 111 0 0
112 9 3
122 1 0

12 12 111 0 0
112 5 2
122 6 1
222 0 2

12 22 112 1 0
122 0 0
222 0 0

22 12 122 2 0
222 0 0

aNDJP is nondisjoining parent.
bCDJP is correctly disjoining parent.
cMaternal meiosis I cases.
dMaternal meiosis II cases.

TABLE III. Parameter estimates for example dataset

Parameter Null hypothesis Alternative hypothesis

w1 1.0a 1.98
w2 1.0a 1.74
w3 1.0a 1.74

hmI 0.12 0.16
hmII 0.32 0.39

aThese parameter values are specified under null hypothesis, not
estimated.
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the two columns under the alternative hypothesis
is the previously discussed counfounding of the
linkage and association parameters. If in fact
there is association (selection), but we fit a
model that does not account for it, we will
misestimate the linkage parameters. (As an aside,
note that this implies that standard trisomic
linkage mapping methods, such as those de-
scribed in Feingold et al. [2000], are incorrect in
the presence of selection.)
Our results are relatively consistent with the

null hypothesis, though the small sample size
means that this analysis is far from conclusive.
The estimates of h parameters are similar between
the null and alternative hypotheses. The alter-
native hypothesis estimates of the w parameters
are on the order of 2, indicating that a fetus with
genotype 112, 122, or 222 is approximately twice
as likely as a fetus with genotype 111 to survive to
birth and be affected by a congenital heart defect.
However, the value of the w2 statistic for the
likelihood ratio test is 1.58, giving a P-value of 0.66
(3 df).

DISCUSSION

We present a TDT for trisomic data which can
be used to detect selection effects of a locus,
effects on a trait, or both. Given that we currently
have little information about specific effects of
genes with respect to survival of a trisomic fetus,
we recommend that this test not be applied to case
trios without also using control trios. Collecting
both case and control trios also allows one to
directly compare the genotype frequencies of the
case and control offspring. Additional tests that
could be applied to such a dataset include case-
control comparisons of parental genotypes and
tests of Hardy-Weinberg equilibrium in both
offspring and parents.
One of the most important areas for further

development of this work is the method for
dealing with the map parameters (h parameters).
In our example dataset, the map parameters are
being estimated from an extremely small sample,
i.e., a subset of cases selected from a larger
population. It may be more appropriate to
estimate h parameters from that larger dataset
and use them in the TDT. Computationally this
would be simple. However, if there are locus-
specific selection effects in the larger dataset, the h
estimates will be incorrect. If future study of
control datasets using our TDT shows that selec-

tion effects are not important, then map para-
meters estimated from a large control dataset can
be used in TDT studies of cases. Even if one must
estimate the map parameters as a part of the TDT,
the estimation could probably be improved with a
multipoint procedure. If a number of markers
very close together are being tested, one could
expand our model to include all loci simulta-
neously, with separate w parameters at each locus
but the same h parameter. One could even
estimate different h parameters at each locus
(i.e., estimate the entire linkage map simulta-
neously with the association parameters), though
this would be computationally challenging.
Another obvious extension of our method is to

consider markers with more than two alleles. The
standard TDT extends to multialleleic markers by
doing separate tests to each allele vs. all the others.
P-values must be adjusted accordingly [e.g.,
Betensky and Rabinowitz, 2000]. It might be
possible to take that approach here, though it is
not entirely clear how to execute a correct P-value
adjustment or how to interpret the estimates of h
parameters.
Finally, it is also possible to extend our method

to directly compare association parameters be-
tween case and control samples, rather than
comparing each of them separately to random
segregation. Such a two-sample test looks for
effects on the trait while controlling for selection
effects. To implement a two-sample test, we
define the w parameters as survival probabilities,
and define new ‘‘c’’ parameters for each genotype
as the conditional probabilities of affectedness
given survival. We fit our model as presented
previously to the control data. Simultaneously, we
fit the case data to the same model, but with the
product wc in place of each w (so wc is the
probability of a live-born affected offspring). This
produces separate estimates of the w parameters
and the c parameters, and we can test the c
parameters (trait effect parameters) while treating
the w parameters (selection parameters) as nui-
sance parameters. We feel that a two-sample test
will probably be more appropriate sometime in
the future, when selection effects in trisomy are
better understood; at this point, it seems to us to
be more informative to test cases and controls
separately.
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